
1

XFL

Extended Formula Language

2005-2009
Written by Bert Haessler
www.nappz.de/xfl
mailto:xfl@nappz.de

Documentation XFL Version 2.85
15th of February 2009

http://www.nappz.de/xfl
mailto:xfl@nappz.de

2

Preliminary remark

The formula language of Lotus Notes is a very simple designed programming language. It is easy to
learn but nevertheless possesses a large extend. In this respect it has some benefits compared with
LotusScript, e.g. handling lists. Formulas are not only suited for writing agents, actions etc. but also
for configuring complex applications. Therefore you can find Notes based workflow management
systems which uses the formula language to define processes or actions. Unfortunately you are often
confronted with several limits of the formula language. Some of the insufficiencies of the language
respectively of its interplay with LotusScript are:

- lack of a possibility to define own formulas*
- no real formula debugging
- not possible to integrate own LotusScript libraries
- subfunctions not programmable
- no direct data interchange between script and formula code
- no jumps and loops programmable**
- complicated reassignment of variables**
- Evaluate() with restrictions, e.g. no @Prompt possible

* apart from coding dll
** partly possible since Notes R6

Thus the idea occurred to extend the given formula language in some points. The aim was on the one
hand to eliminate the insufficiencies mentioned above and on the other hand to provide useful
possibilities of influence on the language and its runtime environment to the developer. Furthermore
the code should be executable under Notes R4/5. Finally the new language dialect Extended Formula

Language (XFL) was created. XFL is a language in imitation of the Standard Formula Language
(SFL) provided by Lotus Notes. XFL is downward compatible to SFL. However there are some new
or differing language constructs which are not available in SFL.

3

XFL language constructs

All SFL constructs can also be used in XFL. You can get the whole scope of SFL in detail reading the
help of the Domino Designer. Therefore the following documentation only contains those XFL
language constructs which differ from SFL. Some of the features belong to SFL since Notes R6. XFL
provides them even for clients with Notes R4/5! Partly the meaning of some constructs is a little
different to SFL.

4

Keywords

DEFINE

Allows you to define functions during runtime. Mostly it is useful to define such application specific
functions at initialization time using the global LotusScript variable XFLInit (see chapter Global
declared LotusScript variables).

Syntax
DEFINE FunctionName [(Param1 [; ... [; ParamN]])] := FunctionBody

Functions can be defined with or without parameters. FunctionBody is an XFL expression which is
executed when function FunctionName is called. Param1-N are optional parameters of the function
which are available as local variables in FunctionBody. The definition of a function via DEFINE
effects global, i.e. it is kept as long as the script library XFLEngine is loaded.

Example 1
Implementation of a sort algorithm. Since Notes R6 there is the function @Sort() so that R6 clients
can use it. For older clients the function @Sort() will be defined as a bubble sort.
 �����������	
���
����
����� �� ��� � �� �����	� ���
������� �� �� � �� �������������������
�� �� � � � ! � � � � �� � " �����
�# �� � � � #�� � # �� # $ ����������%#& ! ����%#$�& � �� ������%#&�����%#&������%#$�&�����%#$�& �� �� � �������������'�()���*� ���� ��+�,� �� -�.�/����0
�������
��,���

Example 2
It is also possible to redefine native @Functions. This statement lets you test a time dependent code to
run at different dates.
 ����	� ���1 2 �� %��3��3.�.�& ��0
�������1 2�
Example 3
@Functions can be defined with different parameters. Thus XFL supports a kind of function
overloading.
 ����	� ���1 2 �� %��3��3.�.�& �����	� ���1 2�1 2�� �� �415
������1 2� ����1 2���������

UNDEFINE

Deletes a function defined by DEFINE.

5

Syntax
UNDEFINE FunctionName
Example ����	� ���1 2 �� %��3��3.�.�& ��0
�������1 2��6	����	� ���1 2��0
�������1 2�

ORIGINAL

If an native @Function is redefined by DEFINE the original function can be called using the keyword
ORIGINAL.
Syntax
ORIGINAL FunctionName
Example
Combining DEFINE and ORIGINAL can extend native @Functions. @Prompt() requires at least
parameters. This example creates variantions of @Prompt() with one or two parameters. ����	� �0
��7��7
� � 7
. � 7
/ � 7
- � 7
8� �� ����7
/ 9� �6� : �� ��� � ;'�<�	4= �0
��7��7
� � 7
. � 7
/ � 7
- � 7
8��0
. � �� � ;'�<�	4= �0
��7��%;>& � �� � 7
�� �;'�<�	4= �0
��7��%;>& � 7
� � 7
.���'�()���?� �
2 �� �
�333+��0
��7��%�#& � ������� � �������� '�()@�A ��
��B333+��0
��7��������� � �������� '�()%;>& �� 11�1
��� ��C ��2+��0
��7���������� '�()�@�� C � @��7 2�
 � :��B C@
 C��
�+

GLOBAL

Can stand ahead of a variable and indicates that this is a global variable. Global variables remain in
memory after execution of an XFL code in contrast to local variables and can be reused in subsequent
XFLExecute() calls. Global variables can be accessed via the LotusScript functions
XFLGetGlobalVar() and XFLSetGlobalVar() as well. Because of that global variables are suitable for
data exchange between XFL code and LotusScript. Even inside an XFL formula a clear separation of
local and global variables can be useful (see example).

Example ����	� �D
��� �� �E���0
�����D
�-���
When the expression Sqr(4) is executed a local variable X is generated which exists only inside the
function definition of Sqr(x). This variable X would not come into conflict with a local variable X
inside the main routine. You can easily test this using the debugger. ����	� �D
��� �� �E��� �� /�����
B�����0
�����D
�-���
A completely different result would give the following formula: ����	� �D
��� �� �E �<=;F4= ���<=;F4= � �� /��0
�����D
�-��� '�()
��

�� �.+

6

Main routine and subfunction access the same global variable.

When you just read a global variable the keyword GLOBAL can be omitted unless a local variable of
the same name exists.
 <=;F4= � �� /��0
������� '�()/+�� �� 8��0
������� '�()8+��0
����<=;F4= ��� '�()/+�

When there is an identifier e.g. X in the XFL code the interpreter tries to determine the meaning of this
identifier at runtime using the following algorithm:
1. Is there a local variable named X?
2. Is there a local object named X?
3. Is there a global variable named X?
4. Is there a global object X?
5. Is there a field named X in the current document?
6. Is there a user defined function named X?

The algorithm stops at the first positive test. If the last test is negative UNAVAILABLE is returned.
Therefore the first @Print(x) in the example above returns the global variable X, the second @Print(x)
returns the local X.

LABEL

Defines a label. Can be used in combination with @Goto() or @Gosub().
Syntax
LABEL LabelName
Example =4F�= ��
���0
��7��%;>& � ���
�� � ��@�� �� �@� ��B�����B��������0
��7��%2����& � ���1������ �4B ��G�� � �<������
�� � ����

DEFAULT

Syntax
DEFAULT fieldName := value

If the current document does not contains the field fieldName it is created with the value value.
Differently from SFL such a expression can be chained.

Example ���=� 0
�1 �� 0
�C� E ���46=� H�2 �� �

If the Field Qty does not exists it will created as 1. After that the product is calculated. If the Field Qty
already exists its value is taken for multiplication.

OBJECT

Indicates that the following identifier is an object variable.

7

Syntax
OBJECT oName := Expression

Example 1
This code creates an object of the class Lamp.
 ;FI�J� �� �� �J
� ��;�5�C���= �7�� ���

Example 2
The keyword OBJECT can also be used in combination with the keyword GLOBAL. So you access a
global object which is as well accessible via the LotusScript function XFLGetGlobalObject().
 J �� K�=���C
���)<=;F4= ;FI�J� ��� �� �J
� ��;�5 �C���	�������������+L 	��@��B���� � 4� �
� ����� � � K�=<��<��� �;�5 �C��������

For more details see chapter Object oriented programming with XFL.

CALL

Indicates that the following method has no return value.
Syntax
CALL oName.Method
Example 1
Defining an @Formula to work with Notes classes. ����	� �'��
��@ �� �;FI�J�
�1�C �� �J
� ��;�5 �C���	����6�M�
#�7 C���3J

�����C
�����J4==
�1�C3'��
��@���'��
��@�
For more details see chapter Object oriented programming with XFL.

ALIAS

Defines a synonym for a function or an identifier. Mostly it is useful to define aliases at initialization
time using the global LotusScript variable XFLInit (see also chapter Global declared LotusScript

variables).
Syntax
ALIAS newName := oldName
Example 1 4=�4� (2�
�C���� �� �=����(2�
�C�����	 �� � � ��

Means the same as: �=����	 �� � � ��
This way e.g. the English vocabulary of XFL can be translated into an other language.

Example 2
ALIAS can be applied to names of fields or variables. The following code changes the field Name
which is accessed by its alias FullName. Using this principle you can store fields under different
names than they are named in formulas.

8

4=�4� �
��	 �� �� 	 ������=� �
��	 �� �� �677�
J ����
��	 ���

9

Functions

FOR

Executes one or more instructions as long as a condition stays true. The condition is tested before the
execution of the instructions. Furthermore an initialization and incremental code is executed.
Syntax
@For(Init ; Condition ; Increment ; Instruction [; ...])
Parameters
Init: Instruction, usually sets an initial value to a loop variable.
Condition: Expression returning value TRUE or FALSE.
Increment: Instruction, usually incrementing the value of the loop variable.
Instruction: You can write as many formulas as you want.
Example
Bubblesort algorithm
 ���� �� /�.�-�N���� � �� �����������������
�� �� � � � ! � � � � �� � " ����
�# �� � � � #�� � # �� # $ ���������%#& ! ����%#$�& � �� ������%#&�����%#&������%#$�&�����%#$�& �� �� � ������7
����������

WHILE

Executes one or more instructions as long as a condition stays true. The condition is tested before the
execution of the instructions.
Syntax
@While(Condition ; Instruction [; ...])
Parameters
Condition: Expression returning value TRUE or FALSE.
Instruction: One or more formulas.
Example
This code prints all elements of the field Names to the status bar.
 � �� ��M@����� !� ���������	 �����0
�����	 �� � " ������� " �� � " 	 ���%�&��� �� � " ��

DOWHILE

Executes one or more instructions as long as a condition stays true. The condition is tested after the
execution of the instructions.
Syntax
@DoWhile(Instruction [; ...] ; Condition)
Parameters
Condition: Expression returning value TRUE or FALSE.
Instruction: One or more formulas.

10

Example
This code prints all elements of the field Names to the status bar.
 ������������	 ���� � �� '��

����� ����� �� ����M@���� 0
�����	 �� � " ������� " �� � " 	 ���%�&��� �� � " ��� !� ���������	 �����

GOTO

Continues running a routine at a label. Labels are defined using the keyword LABEL.
Syntax
@Goto(Label)
Parameters
Label: Name of a label.

The label must be defined inside the same routine as the function @Goto() or inside a outer routine.

Example
A loop using @Goto().
 =4F�= ��
���0
��7��%;>& � ���
�� � ��@�� �� �@� ��
���������0
��7��%2����& � ���1������ �4B ��G�� � �<������
�� � ����

GOSUB

Interrupts running a routine to continue at a label. After @Return() the interrupted routine will be
continued at the instruction after @Gosub().
Syntax
@Gosub(Label)
Parameters
Label: Name of a label.
Return value
Value returned by the @Return() statement.

Example �� ��0
��� �<��
��	���4� " � ;�����0
��� �<��
��	���4� " � �A����0
��� �<��
��	���4� " � �@
�����'��

������=4F�= 	���4�'��

�������� �� " ���

The label must be defined inside the same routine as the function @Goto() or inside a outer routine. A
following construction is possible: ���
������ �!�� � ����"���<��
�������� '�()5
�7 �
� �� ���
+��<��
������
�� '�()5
�7 ��� �� �
+�

11

�0
����2���<����������=4F�= ����
� '�()� ��� �� ����
 7
�C�1

�+��'��

��2 �� �E���= ��� �������'��

������=4F�= ����� '�()� ��� �� �
��
 7
�C�1

�+��'��

���0
�������A���
The following construction however is not allowed: ���
������ �!�� � ����"���<��
������
�� '�()5
�7 ��� �� �
+��0
����2�� �<����������=4F�= ����
� '�()� ��� �� ����
 7
�C�1

�+��'��

��2 �� �E���= ��� �������<��
������
�� '�()!$$ ��� ���A�1+

RETURN

This function terminates a procedure. Called from a subfunction that very subfunction is terminated
and the execution of the outer function continues. Called after @Gosub(), it causes a return to the
instruction after @Gosub().
Syntax
@Return(Value)
Parameters
Value: value which is returned to the caller.

EVAL

Executes XFL code. This function makes it possible to link XFL code dynamically.
Syntax
@Eval(Code)
Parameters
Code: Text, XFL code to be executed.
Return value
Value of the last expression of the executed code.
Example
Execution of a formula stored in a field of a profile document ��: ���<��0
���������1��J����B� � ���
�
� ���

EVALONSERVER

Executes XFL code on the server. Can be used for executing several actions with a higher access level
than the user possesses. This @Formula uses the agent (XFLOnServer). All global variables are
passed between client and server code. The user at least needs the access to write public documents in
the database.
Syntax
@EvalOnServer(Code)
Parameters
Code: Text, XFL code to be executed.

12

Return value
Value of the last expression of the executed code.
Example
Writing an access log to a document. The user does not need author access to the document. Put this to
the PostOpen event of the form: J �� K�=���C
��;�6���C�O<=;F4= 6��
 �� �6��
� �����: �;���
:�
�)���=� =�B �� ��
���=�B � �������	�A� " � � " <=;F4= 6��
� � �� :���C
����+�O�

The user triggers writing the log by the server without having author access to the document.

ISDEFINED

Tests if a given function name is a function formerly defined by DEFINE. It is not tested if the
function is a valid Notes @Function.
Syntax
@IsDefined(Fname)
Parameters
Fname: Text, name of the function
 Return value
TRUE if a function named Fname is defined by DEFINE else FALSE
Example �������������1��(2�
�C������� ��� ����	� (2�
�C������� �� �E��� �� (2�
�C�����.��

DEBUG

Switches debug mode on or off.
Syntax
@Debug(Mode)
Parameters
Mode: 1 to activate the debugger, 0 to deactivate it.

The debugger appears as a dialog box. If necessary you can implement your own debugger changing
the code of the function XFLDebug() in script library XFLExtension.

PRINT

Prints values to the status bar.
Syntax
@Print(Value1[; ... [; ValueN]])
Parameters
Value1..N: Values of any data type.

Every value is printed to a separate line. If a value itself contains an array then every element of this
array is printed separately. Alternatively you can use instead of @Print() the @Function @StatusBar()
as it is standard since Notes R6.

13

EXECUTE

Executes LotusScript code. All global variables declared in the LotusScript library XFLExtension can
be used within the code even the ones you added there. To access the current document e.g. use the
variable XFLRefDoc.
Syntax
@Execute(Code)
Parameters
Code: Text, LotusScript.
Return value
Return code of the End statement if the code contains one, otherwise 0.
Example
Setting the IsReaders flag of a field.
 ���=� '� 1�
� �� �6��
	 �� � �%41���&������C
���)��� �� � 	����������� �� � K�='����C3<����
��������'� 1�
�����3��'� 1�
� � �

�+��

GETFIELD

Returns the value of a field of the current document.
Syntax
@GetField(Fieldname)
Parameters
Fieldname: Name of the field which is to be read.
Example 0
����<������1�0
��7��%;>J �C���1��& � �4CC�����B ����1� � �M@�C@ ����1 1� 2�
 A �� ��
� 1G� � �����

SETFIELD

Sets a field in the current document. This function is similar to @SetField() in SFL. A difference to
SFL (up to Notes R5) is that you do not need to declare the field before.
Syntax
@SetField(Fieldname ; Value)
Parameters
Fieldname: Name of the field to be set.
Value: Value which is to be assigned to the field.

GETDOCFIELD

Returns the value of a certain field of a certain document. The document has to be stored in the same
database as the current document. Differently form SFL the current document can be accessed too.
Syntax
@GetDocField(UNID ; Fieldname)
Parameter
UNID: UniversalID of the target document.
Fieldname: Name of the field whose value is to be read.
Example
This formula works in XFL but it is not allowed under Notes R4/R5:
 �<����C����1����C
����6��D
��� � ��
�5 �C���

14

SETDOCFIELD

Sets the value of a certain field of a certain document. The document has to be stored in the same
database as the current document. Differently form SFL the current document can be accessed too.
Syntax
@SetDocField(UNID ; Fieldname ; Value)
Parameters
UNID: UniversalID of the target document.
Fieldname: Name of the field whose value is to be set.
Value: Value which is to be assigned to the field.

GET

Returns the value of a local variable.
Syntax
@Get(Varname)
Parameters
Varname: Name of the variable.
Example , �� �������0
����<����, ����

SET

Assigns a value to a local variable. It is not necessary to initialize the variable before as in SFL under
Notes R4/5.
Syntax
@Set(Varname ; Value)
Parameters
Varname: Name of a local variable.
Value: Value which is to be assigned to the variable.
Example �������
��� ��� � ��
��� �� " � � " = ��� ���

GETGLOBAL

Returns the value of a global variable.
Syntax
@GetGlobal(Varname)
Parameters
Varname: Name of a global variable.
Example <��� � , �� �������0
����<��<��� ���, ����

SETGLOBAL

Assigns a value to a global variable. Same meaning as @Set() for local variables.
Syntax
@SetGlobal(Varname ; Value)
Parameters
Varname: Name of a global Valiable.
Value: Value which is to be assigned to the global variable.

15

Example ����<��� ����
��� ��� � ��
��� �� " � � " = ��� ���
XFLVARIABLES

Returns an array of the names of all set local variables.
Syntax
@XFLVariables
Example , �� ������� ,� �� �./�,:
� �� �K�=�
� �������
�� �� � � � !� ����������,:
�� � � �� � " ��0
����,�
�%�& " �� � " �����<���,�
�%�&����

XFLGLOBALVARIABLES

Returns an array of the names of all set global variables.
Syntax
@XFLGlobalVariables
Example <=;F4= , �� ������� <=;F4= ,� �� �./�,:
� �� �K�=<��� ��
� �������
�� �� � � � !� ����������,:
�� � � �� � " ��0
����,�
�%�& " �� � " �����<���,�
�%�&��
);

IF

Similar to @If() in SFL. In XFL there is not a limit of the number of conditions/actions.

XFLVERSION

Returns the version number of the XFL interpreter.
Syntax
@XFLVersion

PROMPT

Opens a dialog box. Same syntax like in SFL. This function had to be reimplemented in LotusScript
because it does not work in Evaluate(). Modified behaviour if XFLDoNotQuitOnCancel is set to 1 (see
chapter Global declared LotusScript variables).

PICKLIST

Opens a modal window. Same syntax like in SFL. This function had to be reimplemented in
LotusScript because it does not work in Evaluate(). Modified behaviour if XFLDoNotQuitOnCancel is
set to 1 (see chapter Global declared LotusScript variables).

DIALOGBOX

Opens a modal window. Same syntax like in SFL. This function had to be reimplemented in
LotusScript because it does not work in Evaluate().

SAVEDOCUMENT

Saves the current document physically. If a formula is executed via Evaluate() or XFLExecute() it is
unfortunately not possible to make out if the execution caused a change of the document. In SFL an

16

according check and the saving has to be performed in LotusScript after Evaluate(). XFL provides
@SaveDocument as an other way.
Syntax
@SaveDocument
Example ,	�A	 �� �� �0
��7��%;>J �C���1��& � �J@ �B� � ��� � �����
 ��A � ��� � 	 ��������	 �� � ����=� 	 �� �� ,	�A	 ��� � �� � �� :���C
�����

If the field Name is changed the document will be saved.

CREATEOBJECT

Creates an object. For more details see chapter Object oriented programming with XFL.
Syntax
@CreateObject(ClassName ; args)
Parameters
ClassName: Name of the class.
The class name can be the name of a native LotusScript class e.g. “NotesSession” or an user defined
class. User defined classes have to be defined in the LotusScript library XFLExtension. Classes
defined in other libraries can be embedded via "USE ..." in XFLExtension.
args: Initial parameters.
These parameters are passed to the method NEW.
Example ;FI�J� 1 �� �J
� ��;�5 �C���	������C
������ ;FI�J� �F�

SETOBJECT

Sets an object variable. For more details see chapter Object oriented programming with XFL.
Syntax
@SetObject(Oname ; Object)
Parameters
Oname: Text. Identifier of an object.
Object: Object which is assigned.
Example ����;�5�C�������� � 1�C3<����
��������'� 1�
�����

This code does exactly the same: ;FI�J� ���� �� 1�C3<����
��������'� 1�
����

SETGLOBALOBJECT

Sets a global object variable. For more details see chapter Object oriented programming with XFL.
Syntax
@SetGlobalObject(Oname ; Object)
Parameters
Oname: Text. Identifier of an object.
Object: Object which is assigned.

GETGLOBALOBJECT

Returns the value of a global object variable. If there is no object variable of this name @Nothing is
returned. For more details see chapter Object oriented programming with XFL.

17

Syntax
@GetGlobalObject(Oname)
Parameters
Oname: Text. Identifier of an object.
Example <=;F4= ;FI�J� 1� �� �J
� ��;�5�C���	�������������3J

���� � � ���<=;F4= ;FI�J� 1�C� �� 1�3J
� ����C
�����<=;F4= ;FI�J� 1�C. �� 1�3J
� ����C
�����P��
�� �� � � � !� . � � �� � " ���<��<��� �;�5 �C���1�C� " ���������3� :����

�� ��

����

XFLGLOBALOBJECTS

Returns an array of the names of all set global object variables. For more details see chapter Object

oriented programming with XFL.
Syntax
@XFLGlobalObjects
Example <=;F4= ;FI�J� ��� �� �J
� ��;�5 �C���	��������������<=;F4= ;FI�J� 1� �� ���3J

���� � � ���,����� �� �K�=<��� �;�5�C���0
����,�������

NOTHING

Initial value of an object variable (as Nothing in LotusScript. For more details see chapter Object
oriented programming with XFL.
Syntax
@Nothing
Example ;FI�J� ��C �� �	��@��B�

ISNOTHING

Checks if an object has the initial value Nothing. For more details see chapter Object oriented
programming with XFL.
Syntax
@IsNothing(Object)
Example �������	��@��B���C� � �'��

����� � ������C3�
�� �� �6��
	 ���

ERROR

Extends the SFL @Function @Error by the possibility of raising LotusScript runtime errors. Works
like the ERROR statement of LotusScript.
Syntax 1
@Error
SLF @Function.
Syntax 2
@Error(errNumer [; errMessage])
Parameters
errNumber: Error number.

18

errMessage: Optional. Error message.
XFL specific error messages are defined in function XFLErrorText() of the script library
XFLExtension. In this function other user defined error messages can be added. If @Error() is called
without the second parameter the interpreter tries to get the error message text by calling
XFLErrorText().
Example ;� �

�
 <��� � ��

�
J �� ������C
���)�����0
��7��%Q��	�& � �4��
�G�� �H
�������� � ��

�
�88�� � ��
�C���� ��
��1��� ���+ L 	��@��B�* 333���� �
�� ��

�
� (��� B���� �=��
��C
�7� �

�
 @ �1���B �� " J��
��

� " �L � " �

�
R " ���*333

19

Operators

Operators "&" and "|"

If two expressions as logically ANDed the native formula processor of Notes at first solves both
expressions and after that ANDs the both results. In many cases this may be inefficient because if the
first expression is FALSE the total result is FALSE and solving the second expression would not be
necessary. Analogous two logically ORed expressions return TRUE even after solving the first to
TRUE. In these cases solving the second expression is also not necessary. XFL uses this optimized
algorithm to handle AND and OR.
Example
This formula combines two security questions in a simple way. �����0
��7��%2����& � �H
������� � ��� 2�
 A �� �� 1� �@��G�� S �0
��7��%2����& � �H
������� � ��� 2�
 '�4==Q A �� �� 1��@��G�� � �� � �'��

��������0
��7��%�#& � ������ � ��������

In SFL the second question is asked uselessly even if the first was answered in negative. Not in XFL.

List subscript operator "[]"

The elements of an array can be accessed by its index. This index number is written behind the
variable in square brackets.
Example ,���� �� �4� � �F� � �J��0
����,����%.&��

Since Notes R6 this operator is available in SFL too, but only to read the elements not to change
them. This code will not run in SFL under Notes R6: ,���� �� �4� � �F� � �J��,����%.& �� �T�� '�()7
����� ��
 ��=L �� 7
����� ��
 K�=+���� �
�F
�,������

Extended field search by operator "?"

The search operator ? provides an easy way to access fields of other documents. This operator is
written behind a field name. The operator causes in case of the current document does not contain the
field a search for this field in alternative documents. The documents to be searched are determined by
the function XFLGetAltRefDoc() in the LotusScript library XFLExtension. The original version of this
function implements the hierarchy of response documents linked to each other by the $Ref field. Thus
the next document to search is the parent document. It is possible to implement other algorithms
according to the conditions and structures of your application e.g. accessing separate configuration
databases.
Example ���=� J ��B�
��� �� J ��B�
���G
If the current document does not contain the field Categories then the parent documents of the
document are searched. After that the value is written to the field Categories in the current document.

20

Additional features

String delimiter { } and ' '

Strings constants can be enclosed not only in quotation marks " " but also in braces { } and single
quotation marks. Functional there is no difference. It helps you to avoid unattractive masking of
quotation marks inside of string constants.

Use of keywords

Opposed to SFL, keywords need not stand before main expressions, but can be used inside of
expressions.
Example �����
�5 �C� � �� � ���=� �
�5�C� �� �!�� �
�5 �C��� � ���
Notes R6 tries to remove this restriction, which did not succeed completely. Code like the following
works fine in XFL but it would not run even in Notes R6: ����,C��1 � ��

� � ���46=� �
�5 �C� �� ��

�� � ���

Prefix @ of Notes @Functions is optional

All @Functions of Notes can be used in XFL. The starting character @ can be omitted.
Example ���7��1���=�����
�5 �C� � �3�� � � ��

is identical to
 ��7��1��=�����
�5�C� � �3�� � � ��
Exceptions are Notes functions without parameters because in these cases the @ is necessary to
distinguish function names from identifiers of fields or variables. So @Today means today’s date but
Today means a variable or field named "Today".

Parentheses can replace @Do

In SFL grouped instructions have to be enclosed in @Do(). This is not necessary in XFL. Simple
parentheses are sufficient.
Example ����,:
� � ��� � �������=� �C �� ������� ���=� �2U �� �� � ���

is identical to
 ���,:
� � ��� � ����=� �C �� ������� ���=� �2U �� �� � ���

Limited nesting levels

The XFL interpreter processes nested expressions in a recursive way. Recursion in LotusScript
however is allowed only up to a certain level. Notes generates an “Out of stack space” error in case of
overrunning this limit. In SFL the limit is higher so that extremely nested terms running well in SFL
may cause an error in XFL runtime environment. To avoid this error you can divide the large term into
smaller ones or wait for better Notes versions which support more nesting.
Example
The summation of 50 ones works in SFL, not in XFL. Deleting the brackets removes the problem.

21

��
�
� ���"��: � �: �
 �����
�
� � *A�
#� ����: � K�=���C
�����
�
� L 	��@��B� *;
� �� �� C# �7 C�
Handling field and variable names containing dots " ."

The dot "." is used in XFL for object oriented programming (see chapter Object oriented programming
with XFL). Therefore it is not possible to use instructions like this:
 ���=� �F3����� �� ���������
You have to use the @Functions @Set(), @Get(), @SetField() and @GetField() instead:
 ��������1���F3������� ����������

22

XFL runtime environment

The way of processing XFL code

XFL code is executed by an interpreter. This interpreter is implemented in LotusScript and consists of
the two LotusScript libraries XFLEngine and XFLExtension. To run XFL code just call a script
function e.g. XFLExecute(). The interpreter can be used in Notes R4.6x or higher in every place where
LotusScript is available in Notes clients or background agents. It is not possible to use XFL in view
selection formulas. To implement field formulas use events that support LotusScript e.g. PostOpen or
QuerySave.

Execution of XFL code takes place in two steps:
1. Parsing the code and transforming it into an internal function tree structure.

Syntax errors are detected at this point and are reported by generating a LotusScript error with
detailed error description and position.

2. Stepping through the function tree.
Three types of functions and operations are differentiated:
1. Native Notes operators and @Functions (SFL)
 These are executed via Evaluate().
2. Native XFL operators and functions
 These are implemented in LotusScript in library XFLEngine.
3. User defined functions
 If the function is hard coded in library XFLExtension it is executed calling
XFLExecuteFunction().
 If the function is defined by a DEFINE expression it is executed interpreting this statement.

23

LotusScript library XFLEngine

Kernel of the interpreter. It provides several functionalities:
- Routines to test and execute XFL code
- Routines to access global XFL variables

This library itself uses variables and routines of the LotusScript library XFLExtension.

Function XFLExecute

Executes XFL code.
Syntax
Function XFLExecute(Formula as String, doc As notesdocument) as Variant
Parameters
Formula: XFL code.
doc: reference document on which the formula is applied.
Return value
Result of the last expression of the code. Whereas the LotusScript function Evaluate() always returns
an array XFLExecute() does so just in case of the result is really an array with more than one value.
Example
This is an example for a form button. It calculates for each of two dates the next anniversary. It shows
how easily new functions can be defined in XFL.
 6�� �K�=��B������� A#� 4� 	�A 	����6�M�
#�7 C�L
�1�C 4� 	����6���C
����L : 4� �
� ��J���� ��
�
� � O'�(�1����� � �B�
��@� � � ��
�C����������	� �	���4���:�
�
2�1 ��� �� ����,�@��4���:�
�
2 �� �415
���1 �� � �Q�
����1 2� $ �Q�
�1 ����������������415
���,�@��4���:�
�
2 � ����,�@��4���:�
�
2 � ���1 2 � � � ������������������=� 	���� ��� �� �	���4���:�
�
2�� ��������=� 	���� ��. �� �	���4���:�
�
2�� ��.��O���
�1�C � A#�3C

���1�C
����: � K�=���C
�����
�
� L
�1�C31�C
�����

Function XFLExecuteOnUIDoc

Executes XFL code on the current UI document. Use this function in form buttons or agents. Using
XFLExecuteOnUIDoc() instead of XFLExecute() can save some lines of code. Internally it is
implemented this way:
 0
���C �
�C���� K�=���C
��;�6���C�C�1� 4� ��
��B� 4� �
� ����� A#� 4� 	�A 	����6�M�
#�7 C�K�=���C
��;�6���C � K�=���C
���C�1�L A#�3J

�����C
����3��C
�������1 �
�C����

Function XFLExecuteOnUIView

Executes XFL code on selected documents of a view. Use this function in view buttons or agents.
Using XFLExecuteOnUIView() instead of XFLExecute() can save some lines of code. Internally it is
implemented this way:

24

 0
���C �
�C���� K�=���C
��;�6����A�C�1� 4� ��
��B� 4� �
� ����� ��� 4� 	�A 	�����������L 1� 4� 	����� � � ��L C�� 4� 	������C
����J����C����L 1�C 4� 	������C
������� 1� � ���3J

���� � � ����� C�� � 1�36�7
�C����1��C
�������� 1�C � C��3<����
����C
����M@��� 	�� 1�C �� 	��@��BK�=���C
��;�6����A � K�=���C
���C�1� L 1�C���� 1�C � C��3<��	�����C
�����1�C�M��1��1 �
�C����
Function XFLExecuteOnServer

Executes XFL code on server. Can be used for executing several actions with a higher access level
than the user possesses. This function uses the agent (XFLOnServer). All global variables are passed
between client and server code. The user at least needs the access to write public documents in the
database.
Syntax
Function XFLExecuteOnServer(Formula as String, doc As notesdocument) as Variant
Parameters
Formula: Text, XFL code to be executed.
doc: reference document on which the formula is applied.
Return value
Value of the last expression of the executed code.
Example
Writing an access log to a document. The user does not need author access to the document. Put this to
the PostOpen event of the form: J �� K�=���<��� ��
��6��
�L ���36��
� ���J �� K�=���C
��;���
:�
�)���=� =�B �� ��
���=�B � �������	�A� " � � " <=;F4= 6��
���� :���C
����+L ��

C�31�C
�����

The user triggers writing the log by the server without having author access to the document.

Sub XFLCheckSyntax

Checks formula code for errors in its structure. The code is e.g. searched for wrong parentheses. When
an error is found this function generates a error containing detailed information about it. Only the
structure of the code is analysed not the validity of function names. Only some functions e.g. @If() are
checked for the correct number of parameters.
Syntax
Sub XFLExecute(Formula as String)
Parameters
Formula: XFL code.
Example
This raises an error because of wrong parentheses.
 6�� �K�=��B����J���� ��
�
� � O���� ��� ���� �� � �7�����:�� � ���B ��:���� OJ �� K�=J@�C#�2�� ����
�
� �

25

Sub XFLSetGlobalVar

Sets a global variable. It can be reused in later XFL code.
Syntax
Sub XFLSetGlobalVar(VarName As String, value As Variant)
Parameters
VarName: Name of an XFL variable.
Value: Value to be assigned to the variable.
Example
The debugger shows well how the function works.
 6�� �K�=��B����J �� K�=���<��� ��
������� L ��@�� �� � �� �7����0
��� K�=���C
���O����
B�����'�7� C��
���
��B�<=;F4= ���� � � � � ��� O L 	��@��B�

Function XFLGetGlobalVar

Reads a global variable. Global variables can be set by XFL code or by the function
XFLSetGlobalVar().
Syntax
Function XFLGetGlobalVar(VarName As String) As Variant
Parameters
VarName: Name of an XFL variable.
Return value
Value of the variable.
If the variable does not exist EMPTY is returned.
Example
Data exchange between XFL and LotusScript.
 6�� �K�=��B����J���� ��
�
� � O<=;F4= 	�A���� �� �'�7� C��
���
��B�<=;F4= ���� � � � � ��� OJ �� K�=���<��� ��
������� L ��@�� �� � �� �7����J �� K�=���C
�����
�
� L 	��@��B�0
��� K�=<��<��� ��
�������� S � $� � S K�=<��<��� ��
��	�A������

Sub XFLDeleteGlobalVar

Deletes one or more global variables.
Syntax
Sub XFLDeleteGlobalVar(VarNames As Variant)
Parameters
VarNames: Name or array of names of global variables.
Example
Data exchange between XFL and LotusScript.
 J���� ��
�
� � O<=;F4= 	�A���� �� �'�7� C��
���
��B�<=;F4= ���� � � � � ��� OJ �� K�=���<��� ��
������� L ��@�� �� � �� �7����J �� K�=���C
�����
�
� L 	��@��B�0
��� K�=<��<��� ��
�������� S � $� � S K�=<��<��� ��
��	�A������J �� K�=������<��� ��
��������0
��� K�=<��<��� ��
�������� S � $� � S K�=<��<��� ��
��	�A������ * ��A �@� ��
�� ��
��B �� ��7�2

26

Function XFLGlobalVariables

Lists the names of all global variables.
Syntax
Function XFLGlobalVariables As Variant
Return value
Array of the variable names.
Example
Data exchange between XFL and LotusScript.
 ��� :� ��� 4� �
� ��J���� ��
�
� � O<=;F4= 	�A���� �� �'�7� C��
���
��B�<=;F4= ���� � � � � ��� OJ �� K�=���<��� ��
������� L ��@�� �� � �� �7����J �� K�=���C
�����
�
� L 	��@��B�:� ��� � K�=<��� ��
� ������
 �� : �� :� ���0
��� :L K�=<��<��� ��
�J��
�:����1 ��
 ��

Function XFLCreateGlobalObject

Creates a global object variable. It can be reused in later XFL code.
Syntax
Function XFLCreateGlobalObject(oname As String, classname As String, args As Variant) as Variant
Parameters
oname: Name of the new object variable.
ClassName: Name of the class.
The class name can be the name of a native LotusScript class e.g. “NotesSession” or an user defined
class. User defined classes have to be defined in the LotusScript library XFLExtension. Classes
defined in other libraries can be embedded via "USE ..." in XFLExtension.
args: Initial parameters.
These parameters are passed to method NEW.
Return value
Object created.
Example
Exchanging objects between XFL and LotusScript.
 6�� �K�=��B����J �� K�=J
� ��<��� �;�5 �C�����������L �	������������L 	
���J���� ��
�
� �);FI�J� , B��� �� �������3J

���4B��� � �0
����, B���3	 ���+J �� K�=���C
�����
�
� L 	��@��B�

For more information see chapter Object oriented programming with XFL.

Function XFLSetGlobalObject

Sets a global object variable.
Syntax
Sub XFLSetGlobalObject(oname As String, obj as Variant)
Parameters
oname: Name of the object variable.
obj: Object to be assigned to the variable.

27

Example
Exchanging objects between XFL and LotusScript. ��� ��� 4� 	�A 	�����������J �� K�=���<��� �;�5�C�����������L ����J �� K�=���C
���);FI�J� B��� �� �������3J

���4B�����0
���� B���3	 ���+L 	��@��B�

For more information see chapter Object oriented programming with XFL.

Function XFLGetGlobalObject

Returns a global object variable.
Syntax
Function XFLGetGlobalObject(oname As String) as Variant
Parameters
oname: Name of the object variable.
Return value
If an object of this name exists it is returned else Nothing is returned.
Example
Exchanging objects between XFL and LotusScript. ��� B 4� �
� ��J���� ��
�
� �)<=;F4= ;FI�J� B��� �� �J
� ��;�5�C���	�������������3J

���4B��� � �0
���� B���3	 ���+J �� K�=���C
�����
�
� L 	��@��B���� B � K�=<��<��� �;�5�C��� B�����

For more information see chapter Object oriented programming with XFL.

Sub XFLDeleteGlobalObject

Deletes one or more global object variables.
Syntax
Sub XFLDeleteGlobalObjects(ObjectNames As Variant)
Parameters
ObjectNames: Name or array of names of global object variables.
Example
Exchanging objects between XFL and LotusScript.
 ��� B 4� �
� ��J���� ��
�
� �)<=;F4= ;FI�J� B��� �� �J
� ��;�5�C���	�������������3J

���4B��� � �0
���� B���3	 ���+J �� K�=���C
�����
�
� L 	��@��B���� B � K�=<��<��� �;�5�C��� B�����J �� K�=������<��� �;�5 �C��� B�����

For more information see chapter Object oriented programming with XFL.

Function XFLFormatCode

Formats a XFL expression. The structure of the formula is solved and presented inserted. Unnecessary
spaces are removed.

28

Syntax
Function XFLFormatCode(Code As String) as String
Parameters
Code: Formula to be formatted.
Return value
Formula in new format.
Example 6�� �K�=��B����J���� � � O�����!���� ������O(��� B���� K�=��
� �J�1����
Output:
 ���� F! ���� ���� F�

29

LotusScript library XFLExtension

The library XFLExtension contains functions which are called by functions of the library XFLEngine.
Here the programmer gets the possibility to implement own @Functions and classes or adapt the
language otherwise.

Global declared LotusScript variables

The following variables are important:
XFLRefDoc as NotesDocument
Is set by the function XFLExecute() to the passed NotesDocument object. Can be used in subs or
functions of this library.
XFLDebugMode as Integer
Represents the current debugging mode. This variable changes executing the @Function @Debug().
By setting it to 1 you can enable debugging or to 0 to disable debugging.
XFLExtendedFunctions as String
Here the names of user defined functions are declared. Separate the names by comma. This variable
has to be set in Initialize. It is used by the engine to decide if a function is user defined and has to be
executed by calling XFLExecuteFunction().
XFLInit as String
Here you can declare XFL code which is to be executed at the time of loading the library XFLEngine.
This variable has to be set in Initialize. It is suitable for ALIAS or DEFINE statements or for setting
global variables.
XFLDoNotQuitOnCancel As Integer
If a @Prompt() or @Picklist() dialog is cancelled in SFL the whole formula code is aborted. So it is
not possible to react to this event by formulas. By setting the global variable XFLDoNotQuitOnCancel
to 1 you can cause continuing the formula after canceling @Prompt(). In this case @Prompt() returns
-1.

Function XFLExecuteExtendedFunction

This routine is called every time a user defined function occurs in XFL code whose name is declared
in XFLExecuteFunctions.
Syntax
Function XFLExecuteFunction(fname As String, Params As Variant, IsXFL As Integer) As Variant
Parameters
Fname: Name of the called function.
Params: passed parameters for the function.
IsXFL: Is a return value. If you set it within this routine to TRUE the result is interpreted as XFL code
as well and will be executed afterwards.
Return value
Result of the user defined function.

An own XFL function is programmed in two steps:
1. Declare the nameof the function in variable XFLExtendedFunctions.
2. Write the function code into Sub XFLExecuteFunctions().

Example 1 �
� ����� ��U�

30

K�=�����1�1�
�C����� � �333 L �(2�
�C�������1 �
��
�C���� K�=���C
�������1�1�
�C������� �� 4� ��
��BL 0
 �� 4� �
� ��L ��K�= 4� ����B�
� 4� �
� ������C� J �� �� ��333J �� ��(Q�6	J��;	�� * !$ ��A 2� C 7�� � �����
�9(��� B���� �V���� M�
�19 � " 0
 ����� * �@�� ��
�C���� �@ �� @ :� � �� �� ��� 7
 ����
K�=���C
�������1�1�
�C���� � �

���1 ����C���1 �
�C����

That is all. Test it by a little agent:
 6�� �K�=��B����J �� K�=���C
���O���
�� �� � � �!- � � �� � " � � �(2�
�C������=����� ���� � " ���������� OL 	��@��B�

Please note that XFL function or variable names are case insensitive. Internally they are always
handled in capital letters. So in the example above you also could write 333���
�� �� � � �!- � � �� � " � � �WXYZ[\]^_`��=����� ���� � "333

However, the name of the XFL Function is passed to sub XFLExecuteFunction() always in capital
letters (see example in LotusScript libary XFLExtension)!

Example 2
The result of an user defined function can be XFL code again being executed afterwards. In this case
the parameter IsXFL has to be set to TRUE. This example defines the function @2ndRight() which
searches for the second occurrence of a given string. �
� ����� ��U�K�=�����1�1�
�C����� � �333 L �.�1'�B@����1 �
��
�C���� K�=���C
�������1�1�
�C������� �� 4� ��
��BL 0
 �� 4� �
� ��L ��K�= 4� ����B�
� 4� �
� ������C� J �� �� ��333J �� ��.	�'�<V��� * !$ �A 2� C 7�� � �����
�9K�=���C
�������1�1�
�C���� � O�'�B@���'�B@���O " 7
 ����� " O� � �O " 7
 ����� " O�� � �O " 7
 ����� " O��O��K�= � �

���1 ����C�

Test it:
 6�� �K�=��B����0
��� K�=���C
���O,���� �� ��@���
� ���� A�
1��� �.�1'�B@��,���� � � �� OL 	��@��B� * 7
���� ����� A�
1��

Sub XFLPrepareCode

This sub is called internally before execution of XFL code. Here you can make changes on the code or
add actions e.g. for logging. You also can use this sub in conjunction with a SmartIcon to toggle the
debug mode.
Syntax
Sub XFLPrepareCode(Code as String)
Parameter
Code: Code to be executed.

31

Sub XFLDebug

This routine is called by the interpreter during execution of XFL code after every function or
operation, if the XFL debugger is activated. The intermediate result and set variables are displayed.
The debugger can be activated by the XFL function @Debug(1) or by setting the global LotusScript
variable XFLDebugMode = True.
Syntax
Function XFLDebug(code As String, StartPos As Integer, EndPos As Integer, Value As
NotesDocument, locals As NotesDocument, globals As NotesDocument, localObjects As Variant,
globalObjects As Variant)
Parameters
Code: Code being executed.
StartPos: Position of the first character of the current expression in code string.
EndPos: Position of the last character of the current expression in code string.
Value: Intermediate result.
Locals: Local variables.
Globals: Global variables.
LocalObjects: Local objects.
GlobalObjects: Global objects.

The variables are delivered as fields of temporary documents because LotusScript does not support all
formula data types, e.g. @Error or links. The standard version of this sub only displays the values. If
necessary you can change the code even to manipulate the values as it is usual in other debuggers. To
do so just implement methods to change the fields of the temporary documents.

Sub XFLCommand

This sub is called by the interpreter during execution of XFL code every time an @Command([])
occurs.
Syntax
Sub XFLCommand(cname As String, params As Variant)
Parameters
Cname: Name of the command.
Params: Parameters of the @Command.

Use this sub to implement @Commands you want to use in XFL code. This sub is necessary for
achieving compatibility to SFL. For the moment only @Command([FileSave]) and
@Command([ViewRefreshFields]) are implemented. This way SFL code with @Commands can be
executed by the XFL interpreter. Unsupported @Commands will have no effect.

Function XFLGetAltRefDoc

XFL provides a special operator "?" to search fields in other documents. The operator is written behind
a field name. If the current document would not contain the field other documents can be searched.
The function XFLGetAltRefDoc() defines which alternative documents are to be searched. In the
standard version of this sub the response hierarchy of documents linked by $Ref is implemented. This
means the search in each parent document. Other algorithms can be programmed here.
Syntax
Function XFLGetAltRefDoc(doc As notesdocument, fieldname As String) As notesdocument

32

Parameters
doc: Document not containing the field.
fieldname: Name desired field.
Return value
Document to be searched next

This function is called as long as it returns NOTHING or the field is found.

Example J �� K�=���C
���O���=� J ��B�
��� �� J ��B�
���GO L 1�C�
If doc does not contains the field Categories then at first the parent documents are searched and after
that the fields value is written to the field Categories in doc.

33

Agent (XFLOnServer)

This agent is used by @formula @EvalOnServer() and function XFLExecuteOnServer(). The code
passed to @EvalOnServer() and XFLExecuteOnServer() is executed in the name of the signer of this
agent.

Subform XFLExtensionR4

This subform is necessary only is your application runs on Notes R4 clients. It is used by the functions
@Prompt() and @Picklist() for LotusScript of Notes R4 does not provide an equivalent for these
functions. If there are no R4 clients any longer this subform would be unnecessary.

34

Object oriented programming with XFL

SFL dos not support object oriented programming whereas XFL allows combining formula and object
oriented programming.

All available LotusScript classes can be used. User defined classes has to be defined in the LotusScript
library XFLExtension or has to be embedded via “USE ...” in XFLExtension if they are defined in
other libraries.

An object is created in XFL by the function @CreateObject() or in LotusScript by the function
XFLCreateGlobalObject().

In XFL formulas an object variable has to be identified by the keyword OBJECT.
 ;FI�J� ������� �� �J
� ��;�5 �C���	��������������

An object is accessed by the methods of its class. Use the common dot notation. Chaining of methods
is possible.
 '�()�� �7�� �� ��� �@� ��4
�@�
 �� B �� ����13 �@�� �� ��� 7�������
���B ���7�� ��
�
� �+�;FI�J� ������� �� �J
� ��;�5 �C���	��������������;FI�J� �21�C �� �������3C

���1 � � ��34����C
�����3<����
����C
����� '�()C@ ����B+�;FI�J� �� �� �21�C3<����
���������1���
������3��4
�@�
� �� ��

�� '�()C@ �B��B 7
�7�
���� �� ��5 �C�� �2 ���B����� �7�
 ��
 ��+

It is possible to distinguish between local and global objects as it is possible for common variables. To
do so use the keywords OBJECT and OBJECT GLOBAL or the @functions @SetObject() and
@SetGlobalObject().

Global objects can also be accessed in LotusScript by the functions XFLSetGlobalObject() and
XFLGetGlobalObject().

The current document is stored in the global object variable doc by default. The following formula line
would work without assignment of additional variables:
 1�C3<����
���������1���
���3��4
�@�
� �� ��

�� '�()
�� �� ��5�C� :
� ��� �;J+�

	Preliminary remark
	XFL language constructs
	Keywords
	DEFINE
	UNDEFINE
	ORIGINAL
	GLOBAL
	LABEL
	DEFAULT
	OBJECT
	CALL
	ALIAS

	Functions
	FOR
	WHILE
	DOWHILE
	GOTO
	GOSUB
	RETURN
	EVAL
	EVALONSERVER
	ISDEFINED
	DEBUG
	PRINT
	EXECUTE
	GETFIELD
	SETFIELD
	GETDOCFIELD
	SETDOCFIELD
	GET
	SET
	GETGLOBAL
	SETGLOBAL
	XFLVARIABLES
	XFLGLOBALVARIABLES
	IF
	XFLVERSION
	PROMPT
	PICKLIST
	DIALOGBOX
	SAVEDOCUMENT
	CREATEOBJECT
	SETOBJECT
	SETGLOBALOBJECT
	GETGLOBALOBJECT
	XFLGLOBALOBJECTS
	NOTHING
	ISNOTHING
	ERROR

	Operators
	Operators "&" and "|"
	List subscript operator "[]"
	Extended field search by operator "?"

	Additional features
	String delimiter { } and ' '
	Use of keywords
	Prefix @ of Notes @Functions is optional
	Parentheses can replace @Do
	Limited nesting levels
	Handling field and variable names containing dots "."

	XFL runtime environment
	The way of processing XFL code
	LotusScript library XFLEngine
	Function XFLExecute
	Function XFLExecuteOnUIDoc
	Function XFLExecuteOnUIView
	Function XFLExecuteOnServer
	Sub XFLCheckSyntax
	Sub XFLSetGlobalVar
	Function XFLGetGlobalVar
	Sub XFLDeleteGlobalVar
	Function XFLGlobalVariables
	Function XFLCreateGlobalObject
	Function XFLSetGlobalObject
	Function XFLGetGlobalObject
	Sub XFLDeleteGlobalObject
	Function XFLFormatCode

	LotusScript library XFLExtension
	Global declared LotusScript variables
	Function XFLExecuteExtendedFunction
	Sub XFLPrepareCode
	Sub XFLDebug
	Sub XFLCommand
	Function XFLGetAltRefDoc

	Agent (XFLOnServer)
	Subform XFLExtensionR4

	Object oriented programming with XFL

