XFL

Extended Formula Language

2005-2009
Written by Bert Haessler
Www. nappz.de/Xfl

hailto:xfil@nappz.de

Documentation XFL Version 2.85
15" of February 2009

http://www.nappz.de/xfl
mailto:xfl@nappz.de

Preliminary remark

The formula language of Lotus Notes is a very simple dedigregramming language. It is easy to
learn but nevertheless possesses a large extend. In gastrigdhas some benefits compared with
LotusScript, e.g. handling lists. Formulas are not onlyedudbr writing agents, actions etc. but also
for configuring complex applications. Therefore you can firudeN based workflow management
systems which uses the formula language to define proaasaesons. Unfortunately you are often
confronted with several limits of the formula languagem8 of the insufficiencies of the language
respectively of its interplay with LotusScript are:

- lack of a possibility to define own formulas*

- no real formula debugging

- not possible to integrate own LotusScript libraries

- subfunctions not programmable

- no direct data interchange between script and formula code
- no jumps and loops programmable**

- complicated reassignment of variables**

- Evaluate()with restrictions, e.g. n@Promptpossible

* apart from coding dll
** partly possible since Notes R6

Thus the idea occurred to extend the given formula languagenie goints. The aim was on the one
hand to eliminate the insufficiencies mentioned above artdeoother hand to provide useful
possibilities of influence on the language and its runtimérenment to the developer. Furthermore
the code should be executable under Notes R4/5. Finally theanguelge dialedExtended Formula
Language(XFL) was created. XFL is a language in imitatiortreStandard Formula Language
(SFL) provided by Lotus Notes. XFL is downward compatibl8fd&. However there are some new
or differing language constructs which are not availab®&FL.

XFL language constructs

All SFL constructs can also be used in XFL. You canlgetthole scope of SFL in detail reading the
help of the Domino Designer. Therefore the following documentatibncontains those XFL
language constructs which differ from SFL. Some of the featbelong to SFL since Notes R6. XFL
provides them even for clients with Notes R4/5! Partlyntieaning of some constructs is a little
different to SFL.

Keywords

DEFINE

Allows you to define functions during runtime. Mostly it iefid to define such application specific
functions at initialization time using the global LotusBtwariableXFLInit (see chaptdElobal]
declared LotusScript variablgs

Syntax
DEFINE FunctionNam¢g (Paraml[; ... [; ParamN]])] := FunctionBody

Functions can be defined with or without parametensictionBodyis an XFL expression which is
executed when functiodfunctionNamas called.Param1-Nare optional parameters of the function
which are available as local variables—umctionBody The definition of a function ViREFINE
effects global, i.e. it is kept as long as the scripalpXFLENgineis loaded.

Example 1
Implementation of a sort algorithm. Since Notes R6 tisetiee function@Sort()so that R6 clients

can use it. For older clients the functi@Sort()will be defined as a bubble sort.

@If(@TextToNumber(@Version) >= 190 ; " ;
DEFINE @Sort(list) := (max := @Elements(list);
@For(i:=1;i<max;i:=i+1;
@For(k := max ; k>i ; k:=k-1;
@If(list[K] < list[k-1] ; (t:=list[K];list[k]:=list[k-1];list[k-1] :=t) ; ™)
)
)i
list)
)i

REM {let's test it};
| i=4:2:3:1;
@Print(@Sort(_I))

Example 2
It is also possible to redefine native @Functions. Thitement lets you test a time dependent code to

run at different dates.

DEFINE @Today := [01.01.2020] ;
@Print(@Today)

Example 3
@Functions can be defined with different parameters. XRlissupports a kind of function
overloading.

DEFINE @Today := [01.01.2020] ;
DEFINE @Today(days) := @Adjust(@Today; 0,;0;days;0;0;0);

UNDEFINE
Deletes a function defined IBEFINE.

Syntax

UNDEFINE FunctionName
Example

DEFINE @Today := [01.01.2020] ;
@Print(@Today);

UNDEFINE @Today;
@Print(@Today)

ORIGINAL

If an native @Function is redefined BYEFINE the original function can be called using the keyword
ORIGINAL

Syntax
ORIGINAL FunctionName

Example
CombiningDEFINE andORIGINAL can extend native @Functior@Prompt()requires at least

parameters. This example creates variantior® Bfompt()with one or two parameters.
DEFINE @Prompt(parl ; par2 ; par3 ; par4 ; par5) := @If(

par3 != @Unavailable ; ORIGINAL @Prompt(parl ; par2 ; par3; par4 ; par5);

Par2 = "" ; ORIGINAL @Prompt([OK] ; ""; parl) ;

ORIGINAL @Prompt([OK] ; parl ; par2)

)

REM {let’s try it out...};

@Prompt([ok] ; "Title" ; "Test"); REM {how boring...};
@Prompt("Title" ; "Test"); REM {[OK] is added automatically};
@Prompt("Test"); REM {This can help you saving characters}

GLOBAL

Can stand ahead of a variable and indicates thasthigliobal variable. Global variables remain in
memory after execution of an XFL code in contrast talleariables and can be reused in subsequent
XFLExecute(xalls. Global variables can be accessed via the Latips8mctions
XFLGetGlobalVar()andXFLSetGlobalVar(as well. Because of that global variables are suitable f
data exchange between XFL code and LotusScript. Even imsid&L formula a clear separation of
local and global variables can be useful (see example).

Example
DEFINE Sqr(x) := x*x;
@Print(Sqr(4));

When the expressidbqr(4)is executed a local variab¥eis generated which exists only inside the
function definition ofSqr(x) This variableX would not come into conflict with a local varia{e
inside the main routine. You can easily test this usingldieigger.

DEFINE Sqr(x) := x*x;
X:=3;

@Debug(1);
@Print(Sqr(4));

A completely different result would give the following fanta:
DEFINE Sqr(x) := x* (GLOBAL x);

GLOBAL x := 3;
@Print(Sqr(4)); REM {returns 12}

Main routine and subfunction access the same global variable.

When you just read a global variable the keywatdBAL can be omitted unless a local variable of
the same name exists.

GLOBAL x := 3;
@Print(x); REM {3};
X :=5;

@Print(x); REM {5};
@Print(GLOBAL x); REM {3};

When there is an identifier e ¥.in the XFL code the interpreter tries to determine theningeof this
identifier at runtime using the following algorithm:

1. Isthere a local variable namx@

Is there a local object nam&@

Is there a global variable namx@

Is there a global objeot?

Is there a field namex in the current document?

Is there a user defined function naméd

S

The algorithm stops at the first positive test. If trst tast is negative NAVAILABLEis returned.
Therefore the firs@Print(x) in the example above returns the global varixblne second@ Print(x)
returns the locaX.

LABEL

Defines a label. Can be used in combination @i@oto()or @Gosub()

Syntax
LABEL LabelName

Example

LABEL Start;

@Prompt([OK] ; "Start" ; "This is the beginning");
@If(@Prompt([yesno] ; "endless"; "Again?") ; @Goto(Start) ; "™);

DEFAULT

Syntax
DEFAULT fieldName= value

If the current document does not contains the fieldNameit is created with the valualue
Differently from SFL such a expression can be chained.

Example
FIELD Prod := Price * DEFAULT Qty := 1

If the FieldQty does not exists it will created asAfter that the product is calculated. If the Fi€lty
already exists its value is taken for multiplication.

OBJECT

Indicates that the following identifier is an objectigate.

6

Syntax
OBJECToName:= Expression

Example 1
This code creates an object of the claasip

OBJECT I1 := @CreateObject("Lamp”; "")

Example 2
The keywordOBJECTcan also be used in combination with the keywskt@®BAL So you access a

global object which is as well accessible via the LotupSfunction XFLGetGlobalObject()

Call XFLExecute({GLOBAL OBJECT ses := @CreateObject("NotesSession")}, Nothing)
Dim o As Variant
Set 0 = XFLGetGlobalObject("ses")

For more details see chapf@bject oriented programming with XFL

CALL
Indicates that the following method has no return value.
Syntax
CALL oName.Method
Example 1

Defining an @Formula to work with Notes classes.

DEFINE @Refresh := (OBJECT uidoc := @CreateObject("NotesUIWorkspace").CurrentDocument;
CALL uidoc.Refresh);
@Refresh;

For more details see chapf@bject oriented programming with XFL

ALIAS

Defines a synonym for a function or an identifier. Mo#itig useful to define aliases at initialization
time using the global LotusScript varial{ELInit (see also chapt&lobal declared LotusScript
pariables

Syntax

ALIAS newName= oldName

Example 1
ALIAS MyFunction := @Left;
MyFunction(Name ; " ")

Means the same as:
@Left(Name ; " ")

This way e.g. the English vocabulary of XFL can be tetesl into an other language.

Example 2
ALIAScan be applied to names of fields or variables. Theviitig code changes the fidihme

which is accessed by its aliallName Using this principle you can store fields under different
names than they are named in formulas.

ALIAS FullName := Name;
FIELD FullName := @UpperCase(FullName)

Functions

FOR

Executes one or more instructions as long as a condition teteey The condition is tested before the
execution of the instructions. Furthermore an initialc@agind incremental code is executed.

Syntax

@For(Init ; Condition; Increment; Instruction[; ...])

Parameters

Init: Instruction, usually sets an initial value to a loopafae.

Condition Expression returning valueRUE or FALSE

Increment Instruction, usually incrementing the value of the loagable.

Instruction You can write as many formulas as you want.

Example
Bubblesort algorithm

list := 3:2:4:8:1;
max := Elements(list);
For(i:=1;i<max;i:=i+1;

For(k := max ; k>i; k:= k- 1;
If(list[k] < list[k-1] ; (t:=list[k];list[k]:=list[k-1];list[k-1] :=t) ; ")
)
)
print(list);

WHILE

Executes one or more instructions as long as a condition teteey The condition is tested before the
execution of the instructions.

Syntax

@While(Condition; Instruction[; ...])

Parameters

Condition Expression returning valueRUE or FALSE

Instruction One or more formulas.

Example
This code prints all elements of the fibldmego the status bar.

n:=1;

While(n <= Elements(Names);
Print("Name " + Text(n) + ": " + Names[n]);
n:=n+1)

DOWHILE

Executes one or more instructions as long as a condition teteey The condition is tested after the
execution of the instructions.

Syntax

@DoWhile(Instruction[; ...] ; Condition)

Parameters

Condition Expression returning valueRUE or FALSE

Instruction One or more formulas.

Example
This code prints all elements of the fiblldmego the status bar.

If(Elements(Names) = 0; Return(0); "");

n:=1;

DoWhile(
Print("Name " + Text(n) + ": " + Names[n]);
n:=n+1;
n <= Elements(Names))

GOTO

Continues running a routine at a label. Labels are defiriad thee keyword ABEL
Syntax

@Goto(abe)

Parameters

Labet Name of a label.

The label must be defined inside the same routine asnbddn @ Goto()or inside a outer routine.

Example
A loop using@Goto()

LABEL Start;
@Prompt([OK] ; "Start" ; "This is the start");
@If(@Prompt([yesno] ; "endless"; "Again?") ; @Goto(Start) ; "™);

GOSuUB

Interrupts running a routine to continue at a label. A@&eturn()the interrupted routine will be
continued at the instruction aft@Gosub()

Syntax

@Gosubli abel)

Parameters

Labet Name of a label.

Return value

Value returned by th@Return()statement.

Example

a:=0;

Print (GoSub(NextA) + " One");
Print (GoSub(NextA) + " Two");
Print (GoSub(NextA) + " Three");
Return("");

LABEL NextA;
Return(@Text(a := a + 1))

The label must be defined inside the same routine asrhtdn @Goto()or inside a outer routine. A
following construction is possible:

@For(i:=1; i<10 ; i:=i+1;
@Gosub(Time); REM {jump out of @For};
@Gosub(Inner); REM {jump not so far};

10

@Print(y);
@Goto(next);
LABEL inner; REM{label in inner procedure};
@Return(y := i*i);
Label next
)i
@Return("");
LABEL Time; REM {label in outer procedure};
@Return(@Print(@now));

The following construction however is not allowed:

@For(i:=1; i<10 ; i:=i+1;
@Gosub(Inner); REM {jump not so far};
@Print(y); @Goto(next);
LABEL inner; REM{label in inner procedure};
@Return(y := i*i);

Label next

)

@Gosub(inner); REM {<-- not allowed}

RETURN

This function terminates a procedure. Called from awdbion that very subfunction is terminated
and the execution of the outer function continues. Cafted @Gosub()jt causes a return to the
instruction after@Gosub()

Syntax

@Returnyalue

Parameters

Value value which is returned to the caller.

EVAL

Executes XFL code. This function makes it possible to likk Xode dynamically.
Syntax

@EvalCodg

Parameters

Code Text, XFL code to be executed.

Return value

Value of the last expression of the executed code.

Example

Execution of a formula stored in a field of a profile dioent
@Eval(@GetProfileField("Config" ; "Formula"))

EVALONSERVER

Executes XFL code on the server. Can be used for executiagabactions with a higher access level
than the user possesses. This @Formula uses the(dgefMinServer) All global variables are

passed between client and server code. The user atdéealst the access to write public documents in
the database.

Syntax

@EvalOnServeffode

Parameters

Code Text, XFL code to be executed.

11

Return value

Value of the last expression of the executed code.

Example

Writing an access log to a document. The user does ndiagieor access to the document. Put this to
the PostOpen event of the form:

Call XFLExecuteOnUIDoc(|

GLOBAL User := @Username;

@EvalOnServer({FIELD Log := @Trim(Log : @Text(@Now) + " " + GLOBAL User) ; @SaveDocument})
D)

The user triggers writing the log by the server without haviriga access to the document.
ISDEFINED

Tests if a given function name is a function formeidyined byDEFINE. It is not tested if the
function is a valid Notes @Function.

Syntax

@IsDefinedFnameg

Parameters

Fname Text, name of the function

Return value

TRUEIf a function namedrnameis defined byDEFINE elseFALSE

Example
@If(@IsDefined("MyFunction"); ""; DEFINE MyFunction(x) := x*x);
a := MyFunction(2);

DEBUG

Switches debug mode on or off.

Syntax
@Debugiode
Parameters

Mode 1 to activate the debuggérto deactivate it.

The debugger appears as a dialog box. If necessary you camiemplyour own debugger changing
the code of the functiodFLDebug()in script libraryXFLEXxtension

PRINT

Prints values to the status bar.
Syntax

@Print(valuel ; ... [; ValueN])
Parameters

Valuel..N Values of any data type.

Every value is printed to a separate line. If a vakedfitontains an array then every element of this

array is printed separately. Alternatively you can useatsof@Print() the @Functior@StatusBar ()
as it is standard since Notes R6.

12

EXECUTE

Executes LotusScript code. All global variables declareteriotusScript librar)XFLExtensiorcan
be used within the code even the ones you added there. To thecesgrent document e.g. use the
variableXFLRefDoc

Syntax

@ExecuteCode

Parameters

Code Text, LotusScript.

Return value

Return code of thEnd statement if the code contains one, other@ise

Example
Setting thdsReaderdlag of a field.

FIELD Readers := @UserName : "[Admin]";
@Execute({Dim it as NotesItem

Set it = XFLRefDoc.GetFirstltem("Readers")
it.IsReaders = True});

GETFIELD
Returns the value of a field of the current document.
Syntax
@GetFieldFieldnamé
Parameters
Fieldname Name of the field which is to be read.
Example
Print(GetField(Prompt([OKCancelEdit] ; "Accessing a field" ; "Which field do you want to read?" ; "")))

SETFIELD

Sets a field in the current document. This function islaino @SetField() in SFL. A difference to
SFL (up to Notes R5) is that you do not need to declarkeidebefore.

Syntax

@SetFieldFieldname; Valug

Parameters

Fieldname Name of the field to be set.

Value Value which is to be assigned to the field.

GETDOCFIELD

Returns the value of a certain field of a certain dosot. The document has to be stored in the same
database as the current document. Differently formtBElcurrent document can be accessed too.
Syntax

@GetDocFieldUNID ; Fieldnamé

Parameter

UNID: UniversallD of the target document.

Fieldname Name of the field whose value is to be read.

Example
This formula works in XFL but it is not allowed under BetR4/R5:

@GetDocField(@DocumentUniquelD ; "Subject")

13

SETDOCFIELD

Sets the value of a certain field of a certain documiére document has to be stored in the same
database as the current document. Differently formtBElcurrent document can be accessed too.
Syntax

@SetDocFieldINID ; Fieldname, Valug

Parameters

UNID: UniversallD of the target document.

Fieldname Name of the field whose value is to be set.

Value Value which is to be assigned to the field.

GET

Returns the value of a local variable.
Syntax

@Get{arname

Parameters

Varname Name of the variable.

Example
_a:="TEST";
Print(Get("_a"));

SET

Assigns a value to a local variable. It is not neagsgeinitialize the variable before as in SFL under
Notes R4/5.

Syntax

@Set(Varname; Value)

Parameters

Varname Name of a local variable.

Value Value which is to be assigned to the variable.

Example

@Set("Fullname" ; Firstname + " " + Lastname)
GETGLOBAL

Returns the value of a global variable.

Syntax

@GetGlobalfarnamé

Parameters

Varname Name of a global variable.

Example

Global _a := "TEST";
Print(GetGlobal("_a"));

SETGLOBAL

Assigns a value to a global variable. Same meanii@ Set()for local variables.
Syntax

@SetGlobal{varname; Value)

Parameters

Varname Name of a global Valiable.

Value Value which is to be assigned to the global variable.

14

Example

@SetGlobal("Fullname" ; Firstname + " " + Lastname)
XFLVARIABLES

Returns an array of the names of all set local vaggabl

Syntax
@XFLVariables

Example

_a:="TEST"; _b:=123;

_vars := @XFLVariables;

For(i :=1; i <= @Elements(_vars) ;i:=i+1;
Print(_Vars[i] + ": " + Text(Get(_Vars[i]))

)i

XFLGLOBALVARIABLES

Returns an array of the names of all set global vasable

Syntax
@XFLGlobalVariables

Example

GLOBAL _a := "TEST"; GLOBAL _b := 123;

_vars := @XFLGlobalVariables;

For(i :=1; i <= @Elements(_vars) ;i:=i+1;
Print(_Vars[i] + ": " + Text(Get(_Vars[i]))

)i

IF
Similar to@If() in SFL. In XFL there is not a limit of the numberaafnditions/actions.
XFLVERSION

Returns the version number of the XFL interpreter.

Syntax
@XFLVersion

PROMPT

Opens a dialog box. Same syntax like in SFL. This functidrtdvde reimplemented in LotusScript
because it does not work Evaluate() Modified behaviour iXFLDoNotQuitOnCanceis set tal (see
chaptetGlobal declared LotusScript variabjes

PICKLIST

Opens a modal window. Same syntax like in SFL. This fun¢témhto be reimplemented in
LotusScript because it does not worlEvaluate() Modified behaviour iXFLDoNotQuitOnCancels
set tol (see chaptglobal declared LotusScript variables

DIALOGBOX

Opens a modal window. Same syntax like in SFL. This fun¢témhto be reimplemented in
LotusScript because it does not workEwvaluate()

SAVEDOCUMENT

Saves the current document physically. If a formula isubeel viaEvaluate()or XFLExecute(jt is
unfortunately not possible to make out if the execution caasddnge of the document. In SFL an

15

according check and the saving has to be performed in Larips&fterEvaluate() XFL provides
@SaveDocumerats an other way.

Syntax
@SaveDocument

Example

_NewName := @Prompt([OKCancelEdit] ; "Change name" ; "Enter a new name" ; Name);
@If(Name = (FIELD Name := _NewName) ; "" ; @SaveDocument)

If the field Name is changed the document will be saved.

CREATEOBJECT

Creates an object. For more details see ch@ifiiggct oriented programming with XFL

Syntax

@CreateObjecttlassName args)

Parameters

ClassNameName of the class.

The class hame can be the name of a native LotusSlagsteg. “NotesSession” or an user defined
class. User defined classes have to be defined in theSartpslibraryXFLExtensionClasses
defined in other libraries can be embedded'M&E ..."in XFLExtension

args Initial parameters.

These parameters are passed to the m&EMl

Example
OBJECT d := @CreateObject("NotesDocument"; OBJECT DB)

SETOBJECT

Sets an object variable. For more details see ch@iect oriented programming with XFL
Syntax

@SetObjectOname; Objec)

Parameters

Oname Text. Identifier of an object.

Object Object which is assigned.

Example
@SetObject("Item" ; doc.GetFirstitem("Readers"));

This code does exactly the same:
OBJECT Item := doc.GetFirstIitem("Readers");

SETGLOBALOBJECT

Sets a global object variable. For more details segtetfabject oriented programming with XFL
Syntax

@SetGlobalObjectiname; Objec)

Parameters

Oname Text. Identifier of an object.

Object Object which is assigned.

GETGLOBALOBJECT

Returns the value of a global object variable. If themo object variable of this nan@Nothingis
returned. For more details see chafdbject oriented programming with XFL

16

Syntax

@GetGlobalObjec@namé

Parameters

Oname Text. Identifier of an object.

Example

GLOBAL OBJECT db := @CreateObject("NotesSession").CurrentDatabase;

GLOBAL OBIJECT docl := db.CreateDocument;
GLOBAL OBIJECT doc2 := db.CreateDocument;

For(i:=1;i<=2;i:=i+1;
@GetGlobalObject("doc" + @Text(i)).Save(@True; @True)
)i

XFLGLOBALOBJECTS

Returns an array of the names of all set global ob@iables. For more details see chafabject |
priented programming with XHL

Syntax
@XFLGIlobalObjects

Example

GLOBAL OBJECT ses := @CreateObject("NotesSession");
GLOBAL OBIJECT db := ses.CurrentDatabase;

_olist := @XFLGlobalObjects;

Print(_olist);

NOTHING

Initial value of an object variable (&kthingin LotusScript. For more details see chafabject]
priented programming with XKL

Syntax
@Nothing

Example
OBJECT Doc := @Nothing;

ISNOTHING

Checks if an object has the initial valNething For more details see chapfgiject oriented|
programming with XFL

Syntax

@IsNothingObjec)

Example
@If(@IsNothing(Doc) ; @Return("") ; ");
Doc.From := @UserName;

ERROR

Extends the SFL @Functia@Error by the possibility of raising LotusScript runtime errdigorks
like the ERROR statement of LotusScript.

Syntax 1

@Error

SLF @Function.

Syntax 2

@ErrorerrNumer[; errMessagh

Parameters

errNumber Error number.

17

errMessageOptional. Error message.

XFL specific error messages are defined in funckéhErrorText()of the script library
XFLExtensionIn this function other user defined error messages cadde. If@Error() is called
without the second parameter the interpreter tries to getrtbr message text by calling
XFLErrorText()

Example

On Error Goto labError

Call xflexecute({
@If(@Prompt([YesNo] ; "Abort?"; "Question") ; @Error(5500 ; "Function aborted"); ")
} . Nothing)

Exit Sub
labError:
Messagebox "LotusScript error handling (" + Cstr(Err) + ", " + Error$ + ")"

18

Operators

Operators "&" and "|"

If two expressions as logically ANDed the native formulacpssor of Notes at first solves both
expressions and after that ANDs the both results. In masgs this may be inefficient because if the
first expression iSALSEthe total result iFALSEand solving the second expression would not be
necessary. Analogous two logically ORed expressions réREeven after solving the first to
TRUE In these cases solving the second expression is alsocessaey. XFL uses this optimized
algorithm to handl&ND andOR

Example

This formula combines two security questions in a simalg.

@If(@Prompt([yesno] ; "Question" ; "Do you want to do this?") & @Prompt([yesno] ; "Question" ; "Do you REALLY want to do
this?") ; " ; @Return(""));
@Prompt([ok] ; "Info" ; "Done");

In SFL the second question is asked uselessly evie first was answered in negative. Not in XFL.
List subscript operator "[]"

The elements of an array can be accessed by its indisxin@ibx number is written behind the
variable in square brackets.

Example
Jist 1= "A" : "B : C"
Print(_list[2]);

Since Notes R6 this operator is available in SFL bo,only toread the elements not to change

them. This code will not run in SFL under Notes R6:
_|iSt ="A":"B": "C";

_list[2] :="Z"; REM {problem for SFL, no problem for XFL};
@StatusBar(_list);

Extended field search by operator "?"

The search operat@rprovides an easy way to access fields of other dodsmiEnis operator is

written behind a field name. The operator causessa ofithe current document does not contain the
field a search for this field in alternative docunsefithe documents to be searched are determined by
the functionXFLGetAltRefDoc()n the LotusScript librar)XFLExtensionThe original version of this
function implements the hierarchy of response documentdlittkeach other by tlgReffield. Thus

the next document to search is the parent document. Itdtbjmo implement other algorithms
according to the conditions and structures of your applicatgpraecessing separate configuration
databases.

Example
FIELD Categories := Categories?

If the current document does not contain the fieddegorieshen the parent documents of the
document are searched. After that the value is writi¢he fieldCategoriesn the current document.

19

Additional features

String delimiter { } and "

Strings constants can be enclosed not only in quotatéoks " " but also in braces { } and single
guotation marks. Functional there is no difference. It hghpsto avoid unattractive masking of
guotation marks inside of string constants.

Use of keywords

Opposed to SFL, keywords need not stand before main expresbit can be used inside of
expressions.

Example
@If(Subject = " ; FIELD Subject := "<no Subject>" ; ")

Notes R6 tries to remove this restriction, which did notead completely. Code like the following

works fine in XFL but it would not run even in Notes R6:
@If(_cond = @True ; DEFAULT Subject := "True" ; ")

Prefix @ of Notes @Functions is optional

All @Functions of Notes can be used in XFL. The startimgyacter @ can be omitted.

Example
@Explode(@Left(Subject ; ".") ; " ")

is identical to

Explode(Left(Subject ; "."); " ™)

Exceptions are Notes functions without parameters becatisesia cases the @ is necessary to
distinguish function names from identifiers of fieldsvariables. S@ Todaymeans today’s date but
Todaymeans a variable or field namé&bday".

Parentheses can replace @Do

In SFL grouped instructions have to be enclose@Do(). This is not necessary in XFL. Simple
parentheses are sufficient.

Example
@If(_varl = "1"; @Do(FIELD abc := "Test"; FIELD xyz := 1) ; ")

is identical to

If(_varl = "1" ; (FIELD abc := "Test"; FIELD xyz := 1) ; ")
Limited nesting levels

The XFL interpreter processes nested expressions imsigeway. Recursion in LotusScript
however is allowed only up to a certain level. Notes gereeatéOut of stack space” error in case of
overrunning this limit. In SFL the limit is higher so thatrertely nested terms running well in SFL
may cause an error in XFL runtime environment. To avo&ldhior you can divide the large term into
smaller ones or wait for better Notes versions which supporé nesting.

Example
The summation of 50 ones works in SFL, not in XFL. Detethe brackets removes the problem.

20

formula =
"T+(1+1+(1+1+Q+1+Q+A+HQ+HA+HA+HA+HA+HAHA+HAHA+HAHA QA A+
A+A+A+HEHA+A+HA AT+ HTHEHAHEFNNNINNINININININNINININININY"

v = Evaluate(formula) ‘works fine

v = XFLExecute(formula, Nothing) 'Out of stack space

Handling field and variable names containing dots "

The dot "." is used in XFL for object oriented programgn{see chaptégpdbject oriented programming
ith XFL). Therefore it is not possible to use instructions tike:

FIELD DB.Title := @DbTitle;

You have to use the @Functio@sSet() @Get() @SetField(Jand@GetField()instead:

@SetField("DB.Title"; @DbTitle);

21

XFL runtime environment

The way of processing XFL code

XFL code is executed by an interpreter. This interpristenplemented in LotusScript and consists of
the two LotusScript librarie§FLEngineandXFLExtensionTo run XFL code just call a script
function e.gXFLExecute() The interpreter can be used in Notes R4.6x or higherery @lace where
LotusScript is available in Notes clients or backgroagents. It is not possible to use XFL in view
selection formulas. To implement field formulas ugergs that support LotusScript eRpstOperor
QuerySave

Execution of XFL code takes place in two steps:
1. Parsing the code and transforming it into an internadtion tree structure.
Syntax errors are detected at this point and are reploytgenerating a LotusScript error with
detailed error description and position.
2. Stepping through the function tree.
Three types of functions and operations are differetiat
1. Native Notes operators and @Functions (SFL)
These are executed \Eaaluate()
2. Native XFL operators and functions
These are implemented in LotusScript in librABLENgine
3. User defined functions
If the function is hard coded in libra¥FLEXxtensiorit is executed calling
XFLExecuteFunction()
If the function is defined by REFINE expression it is executed interpreting this statement.

22

LotusScript library XFLEngine

Kernel of the interpreter. It provides several functioresit
- Routines to test and execute XFL code
- Routines to access global XFL variables

This library itself uses variables and routines of thais8tript libraryXFLExtension
Function XFLExecute

Executes XFL code.

Syntax

Function XFLExecutdformulaas Stringdoc As notesdocument) as Variant

Parameters

Formula XFL code.

doc reference document on which the formula is applied.

Return value

Result of the last expression of the code. Whereas the lavipisfiinctionEvaluate()always returns
an arrayXFLExecute()ddoes so just in case of the result is really an aridymore than one value.
Example

This is an example for a form button. It calculatessfch of two dates the next anniversary. It shows
how easily new functions can be defined in XFL.

Use "XFLEngine"
Dim wks As New NotesUIWorkspace, uidoc As NotesUIDocument, v As Variant

Const formula = |

REM "define an algorithm as an @Function";

DEFINE @NextAnniversary(date) := @Do(
_thisAnniversary := @Adjust(date ; @Year(@Today) - @Year(date);0;0;0;0;0);
@Adjust(_thisAnniversary ; @If(_thisAnniversary > @Today ; 0 ; 1);0;0;0;0;0));

FIELD NextDatel := @NextAnniversary(Datel);
FIELD NextDate2 := @NextAnniversary(Date2);
I

Set uidoc = wks.currentdocument
v = XFLExecute(formula , uidoc.document)

Function XFLExecuteOnUIDoc

Executes XFL code on the current Ul document. Use thisifumit form buttons or agents. Using
XFLExecuteOnUIDoc(instead ofXFLExecute(can save some lines of code. Internally it is
implemented this way:

Public Function XFLExecuteOnUIDoc(code As String) As Variant

Dim wks As New NotesUIWorkspace

XFLExecuteOnUIDoc = XFLExecute(code, wks.CurrentDocument.Document)
End Function

Function XFLExecuteOnUIView

Executes XFL code on selected documents of a view. Uséutigtion in view buttons or agents.
Using XFLExecuteOnUIView(nstead olXFLExecute(an save some lines of code. Internally it is
implemented this way:

23

Public Function XFLExecuteOnUIView(code As String) As Variant
Dim ses As New NotesSession, db As NotesDatabase, col As NotesDocumentCollection, doc As NotesDocument
Set db = ses.CurrentDatabase
Set col = db.UnprocessedDocuments
Set doc = col.GetFirstDocument
While Not doc Is Nothing
XFLExecuteOnUIView = XFLExecute(code , doc)
Set doc = col.GetNextDocument(doc)
Wend
End Function

Function XFLExecuteOnServer

Executes XFL code on server. Can be used for executing kagtoas with a higher access level
than the user possesses. This function uses the(xgdr®nServer) All global variables are passed
between client and server code. The user at least neegiscss to write public documents in the
database.

Syntax

Function XFLExecuteOnServérgrmulaas Stringdoc As notesdocument) as Variant

Parameters

Formula Text, XFL code to be executed.

doc reference document on which the formula is applied.

Return value

Value of the last expression of the executed code.

Example

Writing an access log to a document. The user does ndiagieor access to the document. Put this to
the PostOpen event of the form:

Call XFLSetGlobalVar("User", ses.Username)
Call XFLExecuteOnServer({FIELD Log := @Trim(Log : @Text(@Now) + " " + GLOBAL User);
@SaveDocument}, source.document)

The user triggers writing the log by the server without haviriga access to the document.
Sub XFLCheckSyntax

Checks formula code for errors in its structure. The i®&ey. searched for wrong parentheses. When
an error is found this function generates a error contadwgtajled information about it. Only the
structure of the code is analysed not the validity of fonatames. Only some functions e@lf() are
checked for the correct number of parameters.

Syntax

Sub XFLExecutdformulaas String)

Parameters

Formula XFL code.

Example
This raises an error because of wrong parentheses.

Use "XFLEngine"
Const Formula = |@If(a=0; "0"; a>0 ; "positive" ; "negative"))|
Call XFLCheckSyntax(Formula)

24

Sub XFLSetGlobalVvar

Sets a global variable. It can be reused in later Xdelec
Syntax

Sub XFLSetGlobalVaMarNameAs String,value As Variant)
Parameters

VarName Name of an XFL variable.

Value Value to be assigned to the variable.

Example
The debugger shows well how the function works.

Use "XFLEngine"
Call XFLSetGlobalVar("Text" , "This is an example")
Print XFLExecute(| @Debug(1);@ReplaceSubstring(GLOBAL Text ; " " ; "")| , Nothing)

Function XFLGetGlobalVar

Reads a global variable. Global variables can be s¥Fhycode or by the function
XFLSetGlobalVar()

Syntax

Function XFLGetGlobalVaMarNameAs String) As Variant

Parameters

VarName Name of an XFL variable.

Return value

Value of the variable.

If the variable does not exiEMMPTYis returned.

Example
Data exchange between XFL and LotusScript.

Use "XFLEngine"

Const Formula = |GLOBAL NewText := @ReplaceSubstring(GLOBAL Text ; " " ; "")|
Call XFLSetGlobalVar("Text" , "This is an example")

Call XFLExecute(Formula, Nothing)

Print XFLGetGlobalVar("Text") & " -> " & XFLGetGlobalVar("NewText")

Sub XFLDeleteGlobalVar

Deletes one or more global variables.

Syntax

Sub XFLDeleteGlobalVakarNamesAs Variant)
Parameters

VarNamesName or array of names of global variables.

Example
Data exchange between XFL and LotusScript.

Const Formula = |GLOBAL NewText := @ReplaceSubstring(GLOBAL Text ; " " ; "")|

Call XFLSetGlobalVar("Text" , "This is an example")

Call XFLExecute(Formula, Nothing)

Print XFLGetGlobalVar("Text") & " -> " & XFLGetGlobalVar("NewText")

Call XFLDeleteGlobalVar("Text")

Print XFLGetGlobalVar("Text") & " -> " & XFLGetGlobalVar("NewText") ' now the first string is empty

25

Function XFLGlobalVariables

Lists the names of all global variables.
Syntax

Function XFLGlobalVariables As Variant
Return value

Array of the variable names.

Example
Data exchange between XFL and LotusScript.

Dim vnames As Variant
Const Formula = |GLOBAL NewText := @ReplaceSubstring(GLOBAL Text ; " " ; "")|
Call XFLSetGlobalVar("Text" , "This is an example")
Call XFLExecute(Formula, Nothing)
vnames = XFLGlobalVariables
Forall v In vnames
Print v, XFLGetGlobalVar(Cstr(v))
End Forall

Function XFLCreateGlobalObject

Creates a global object variable. It can be reuseddn XdL code.

Syntax

Function XFLCreateGlobalObjedaifameAs String,classnameis String,args As Variant) as Variant
Parameters

oname Name of the new object variable.

ClassNameName of the class.

The class hame can be the name of a native LotusSlagsteg. “NotesSession” or an user defined
class. User defined classes have to be defined in theSartpslibraryXFLExtensionClasses
defined in other libraries can be embedded'M&E ..."in XFLExtension

args Initial parameters.

These parameters are passed to maiiod/

Return value

Object created.

Example
Exchanging objects between XFL and LotusScript.

Use "XFLEngine"

Call XFLCreateGlobalObject("session", "NotesSession", Null)

Const Formula = {OBJECT _agent := session.CurrentAgent ; @Print(_agent.Name)}
Call XFLExecute(Formula, Nothing)

For more information see chapfebject oriented programming with XFL

Function XFLSetGlobalObject

Sets a global object variable.

Syntax

Sub XFLSetGlobalObjeathameAs String,obj as Variant)
Parameters

oname Name of the object variable.

obj: Object to be assigned to the variable.

26

Example
Exchanging objects between XFL and LotusScript.

Dim ses As New NotesSession

Call XFLSetGlobalObject("session", ses)

Call XFLExecute({
OBJECT agent := session.CurrentAgent;
@Print(agent.Name)

}, Nothing)

For more information see chaprébject oriented programming with XFL

Function XFLGetGlobalObject

Returns a global object variable.

Syntax

Function XFLGetGlobalObjeathameAs String) as Variant
Parameters

oname Name of the object variable.

Return value

If an object of this name exists it is returned &ls¢hingis returned.

Example
Exchanging objects between XFL and LotusScript.

Dim ag As Variant

Const Formula = {GLOBAL OBJECT agent := @CreateObject("NotesSession").CurrentAgent ; @Print(agent.Name)}
Call XFLExecute(Formula, Nothing)

Set ag = XFLGetGlobalObject("agent")

For more information see chapf@bject oriented programming with XFL

Sub XFLDeleteGlobalObject

Deletes one or more global object variables.

Syntax

Sub XFLDeleteGlobalObjects(Obj&tamesAs Variant)
Parameters

ObjectNamesName or array of names of global object variables.

Example
Exchanging objects between XFL and LotusScript.

Dim ag As Variant

Const Formula = {GLOBAL OBJECT agent := @CreateObject("NotesSession").CurrentAgent ; @Print(agent.Name)}
Call XFLExecute(Formula, Nothing)

Set ag = XFLGetGlobalObject("agent")

Call XFLDeleteGlobalObject("agent")

For more information see chappbject oriented programming with XFL

Function XFLFormatCode

Formats a XFL expression. The structure of the fornsutoived and presented inserted. Unnecessary
spaces are removed.

27

Syntax
Function XFLFormatCod€odeAs String) as String

Parameters

Code Formula to be formatted.
Return value

Formula in new format.

Example

Use "XFLEngine"

Const f = |@If(b<100; 100;b)|
Messagebox XFLFormatCode(f)

Output:

@IF

28

LotusScript library XFLExtension

The libraryXFLEXxtensiorcontains functions which are called by functions of iy XFLEngine
Here the programmer gets the possibility to implement ownr@tfons and classes or adapt the
language otherwise.

Global declared LotusScript variables

The following variables are important:

XFLRefDoc as NotesDocument

Is set by the functioX FLExecute(}o the passed NotesDocument object. Can be used imisubs
functions of this library.

XFLDebugMode as Integer

Represents the current debugging mode. This variable changesireg¢he @Functio@Debug()
By setting it tol you can enable debugging ort¢o disable debugging.

XFLExtendedFunctions as String

Here the names of user defined functions are declarpdr&e the names by comma. This variable
has to be set imitialize. It is used by the engine to decide if a function is usénetfand has to be
executed by calling{FLExecuteFunction()

XFLInit as String

Here you can declare XFL code which is to be executee dintle of loading the librar{FLENngine
This variable has to be setlmitialize. It is suitable forALIAS or DEFINE statements or for setting
global variables.

XFLDoNotQuitOnCancel As Integer

If a @Prompt()or @Picklist()dialog is cancelled in SFL the whole formula code is t&doiSo it is
not possible to react to this event by formulas. Bijragthe global variablXFLDoNotQuitOnCancel
to 1 you can cause continuing the formula after cance@iRyompt() In this case@Prompt()returns
-1.

Function XFLExecuteExtendedFunction

This routine is called every time a user defined funabiceurs in XFL code whose name is declared
in XFLExecuteFunctions

Syntax

Function XFLExecuteFunctiofifameAs String,ParamsAs Variant,IsSXFL As Integer) As Variant
Parameters

Fname Name of the called function.

Params passed parameters for the function.

IsXFL: Is a return value. If you set it within this routinei@UEthe result is interpreted as XFL code
as well and will be executed afterwards.

Return value

Result of the user defined function.

An own XFL function is programmed in two steps:
1. Declare the nameof the function in varialELExtendedFunctions
2. Write the function code into SUXFLExecuteFunctions()

Example 1

Sub Initialize

29

XFLExtendedFunctions = "... , @MyFunction"

End Sub

Function XFLExecuteExtendedFunction(fname As String, Params As Variant, IsXFL As Integer) As Variant
Select Case fname

Case "@MYFUNCTION": ' <- allways capital letters!
Messagebox "Hello World! " + Params(0) ' This @Function shall have at least one parameter
XFLExecuteExtendedFunction = True
End Select
End Function

That is all. Test it by a little agent:

Use "XFLEngine"
Call XFLExecute(|@For(i :=1;i<4;i:=i+ 1 ; @MyFunction("Little test " + @Text(i)))|, Nothing)

Please note that XFL function or variable names areicagnsitive. Internally they are always
handled in capital letters. So in the example above you algd write

L@For(i:=1;i<4;i:=i+1; @mYfUnCtIoN("Little test " +...

However, the name of the XFL Function is passed to&tbExecuteFunction() always incapital
letters (see example in LotusScript libaxXyrLExtensioi

Example 2
The result of an user defined function can be XFL codmdmgang executed afterwards. In this case

the parameter IsXFL has to be seTRUE This example defines the functi@2ndRight(which

searches for the second occurrence of a given string.

Sub Initialize
XFLExtendedFunctions = "... , @2ndRight"

End Sub

Function XFLExecuteExtendedFunction(fname As String, Params As Variant, IsXFL As Integer) As Variant
Select Case fname

Case "@2NDRIGHT": ' <- always capital letters!

XFLExecuteExtendedFunction = |@Right(@Right("| + params(0) + |"; "| + params(1) + |") ; "| + params(1) + |")|
IsXFL = True

End Select

Test it:

Use "XFLEngine"
Print XFLExecute(|_text := "these are some words"; @2ndRight(_text ; " ")|, Nothing) ' prints "some words"

Sub XFLPrepareCode

This sub is called internally before execution of XFL cddere you can make changes on the code or
add actions e.g. for logging. You also can use this subnjuction with a Smartlcon to toggle the
debug mode.

Syntax

Sub XFLPrepareCode(Code as String)

Parameter

Code: Code to be executed.

30

Sub XFLDebug

This routine is called by the interpreter during executiodFL code after every function or
operation, if the XFL debugger is activated. The interatediesult and set variables are displayed.
The debugger can be activated by the XFL func@i@bebug(1)or by setting the global LotusScript
variableXFLDebugMode = True

Syntax

Function XFLDebugfodeAs String,StartPosAs Integer EndPosAs Integer Value As
NotesDocumentpcals As NotesDocumenglobalsAs NotesDocumentpcalObjectsAs Variant,
globalObjectsAs Variant)

Parameters

Code Code being executed.

StartPos Position of the first character of the current expoessi code string.

EndPos Position of the last character of the current expressionde string.

Value Intermediate result.

Locals Local variables.

Globals Global variables.

LocalObjectsLocal objects.

GlobalObjects Global objects.

The variables are delivered as fields of temporarych@nts because LotusScript does not support all
formula data types, e.g. @Error or links. The stashdarsion of this sub only displays the values. If
necessary you can change the code even to manipulate the agliiés usual in other debuggers. To
do so just implement methods to change the fields of theaery documents.

Sub XFLCommand

This sub is called by the interpreter during executionfef Xode every time a@Command([])
occurs.

Syntax

Sub XFLCommandahameAs String,paramsAs Variant)

Parameters

Cname Name of the command.

Params Parameters of the @Command.

Use this sub to implement @Commands you want to use in ¥é&. d his sub is necessary for
achieving compatibility to SFL. For the moment o@Command([FileSavelnd
@Command([ViewRefreshFieldsg)e implemented. This way SFL code with @Commands ean b
executed by the XFL interpreter. Unsupported @Commandsavié no effect.

Function XFLGetAltRefDoc

XFL provides a special operator "?" to search fietdsther documents. The operator is written behind
a field name. If the current document would not contagrfitid other documents can be searched.
The functionXFLGetAltRefDoc(efines which alternative documents are to be searchdtk In
standard version of this sub the response hierarchy of agotaninked bybRefis implemented. This
means the search in each parent document. Other algotmbe programmed here.

Syntax
Function XFLGetAltRefDoajoc As notesdocumenticldnameAs String) As notesdocument

31

Parameters

doc Document not containing the field.
fieldname Name desired field.

Return value

Document to be searched next

This function is called as long as it retuNM®THINGor the field is found.

Example
Call XFLExecute(|FIELD Categories := Categories?| , doc)

If docdoes not contains the fielategorieghen at first the parent documents are searched amnd afte
that the fields value is written to the figlthtegoriesin doc

32

Agent (XFLOnServer)

This agent is used by @formu@EvalOnServer(and functionXFLExecuteOnServer(JThe code
passed t@EvalOnServer(@ndXFLExecuteOnServer{$ executed in the name of the signer of this
agent.

Subform XFLExtensionR4

This subform is necessary only is your application runs @es\NR4 clients. It is used by the functions
@Prompt()and@Picklist() for LotusScript of Notes R4 does not provide an equivdterthese
functions. If there are no R4 clients any longer this subfeowmd be unnecessary.

33

Object oriented programming with XFL

SFL dos not support object oriented programming whereasal&ls combining formula and object
oriented programming.

All available LotusScript classes can be used. User dkeéilasses has to be defined in the LotusScript
library XFLExtensioror has to be embedded VIASE ...” in XFLExtensionf they are defined in
other libraries.

An object is created in XFL by the functi@CreateObject(pr in LotusScript by the function
XFLCreateGlobalObject()

In XFL formulas an object variable has to be identifigdhe keyworddBJECT
OBJECT session := @CreateObject("NotesSession");

An object is accessed by the methods of its classtHésesommon dot notation. Chaining of methods
is possible.

REM {Example to set the IsAuthor flag of a field. This is not possible using simple formulas};
OBJECT session := @CreateObject("NotesSession");

OBJECT mydoc := session.currentdatabase.AllDocuments.GetFirstDocument; REM {chaining};
OBJECT it := mydoc.GetFirstItem("Editors");

It.IsAuthors := @True; REM {changing properties of objects by assignment operator : =}

It is possible to distinguish between local and globataibjas it is possible for common variables. To
do so use the keywor@3BJECTandOBJECTGLOBAL or the @functiong SetObject(and
@SetGlobalObject()

Global objects can also be accessed in LotusScrigtedfunctionsX FLSetGlobalObject(@nd
XFLGetGlobalObject()

The current document is stored in the global object bleréoc by default. The following formula line
would work without assignment of additional variables:

doc.GetFirstItem("Editors").IsAuthors := @True; REM {use of object variable DOC};

34

	Preliminary remark
	XFL language constructs
	Keywords
	DEFINE
	UNDEFINE
	ORIGINAL
	GLOBAL
	LABEL
	DEFAULT
	OBJECT
	CALL
	ALIAS

	Functions
	FOR
	WHILE
	DOWHILE
	GOTO
	GOSUB
	RETURN
	EVAL
	EVALONSERVER
	ISDEFINED
	DEBUG
	PRINT
	EXECUTE
	GETFIELD
	SETFIELD
	GETDOCFIELD
	SETDOCFIELD
	GET
	SET
	GETGLOBAL
	SETGLOBAL
	XFLVARIABLES
	XFLGLOBALVARIABLES
	IF
	XFLVERSION
	PROMPT
	PICKLIST
	DIALOGBOX
	SAVEDOCUMENT
	CREATEOBJECT
	SETOBJECT
	SETGLOBALOBJECT
	GETGLOBALOBJECT
	XFLGLOBALOBJECTS
	NOTHING
	ISNOTHING
	ERROR

	Operators
	Operators "&" and "|"
	List subscript operator "[]"
	Extended field search by operator "?"

	Additional features
	String delimiter { } and ' '
	Use of keywords
	Prefix @ of Notes @Functions is optional
	Parentheses can replace @Do
	Limited nesting levels
	Handling field and variable names containing dots "."

	XFL runtime environment
	The way of processing XFL code
	LotusScript library XFLEngine
	Function XFLExecute
	Function XFLExecuteOnUIDoc
	Function XFLExecuteOnUIView
	Function XFLExecuteOnServer
	Sub XFLCheckSyntax
	Sub XFLSetGlobalVar
	Function XFLGetGlobalVar
	Sub XFLDeleteGlobalVar
	Function XFLGlobalVariables
	Function XFLCreateGlobalObject
	Function XFLSetGlobalObject
	Function XFLGetGlobalObject
	Sub XFLDeleteGlobalObject
	Function XFLFormatCode

	LotusScript library XFLExtension
	Global declared LotusScript variables
	Function XFLExecuteExtendedFunction
	Sub XFLPrepareCode
	Sub XFLDebug
	Sub XFLCommand
	Function XFLGetAltRefDoc

	Agent (XFLOnServer)
	Subform XFLExtensionR4

	Object oriented programming with XFL

